If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2-16y=5=0
We move all terms to the left:
12y^2-16y-(5)=0
a = 12; b = -16; c = -5;
Δ = b2-4ac
Δ = -162-4·12·(-5)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{31}}{2*12}=\frac{16-4\sqrt{31}}{24} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{31}}{2*12}=\frac{16+4\sqrt{31}}{24} $
| 3x(4x)=432 | | 2-4(3r-2)/5=14 | | 29+7x=-3(5x+5) | | x-5/x=6 | | 11x=3.14 | | 6x=8=32 | | -2x-2=-24 | | Y=-0x | | H(2)=x^2+3 | | 6(x^2+2x)^2+1=-5(x^2+2x) | | 6x+4x-5=2(5x+1) | | 2(3x-3×)=10x+6 | | 5(11x+12)-x=-12(x-5) | | 4p+16=-24 | | 25x²-30x+11=0 | | 6-3/4x=9/2 | | 2^x^2=16 | | 8b+7=31 | | 8b-7=31 | | -26+(6b=-3)+7 | | X+3+2x+4=6 | | 22-5x=-6(x-3) | | x/3+5=18 | | 64=22(2)+2x(2) | | x2+2=5x-2 | | 6x+18=34-2x | | x/7+8=11 | | x2+5x-30=6 | | 2x-20=-16 | | x2+6x+18=10 | | 6x2+x-12=0 | | 3(5-h)-2(h-2)=1 |